miércoles, 7 de diciembre de 2016
Aplicaciones de la integral
APLICACIONES DE LA INTEGRAL
1. Hallar el área de regiones planas.
2. Obtener los volúmenes de sólidos de revolución.
3. Calcular volúmenes de sólidos con secciones conocidas.
4. Determinar la longitud de arco de una curva.
5. Examinar el comportamiento aleatorio de variables continuas (función de densidad probabilidad). 6. Conocer el valor promedio de una función.
7. Hallar momentos (fuerzas que ejercen ciertas masa con respecto a un punto) y centros de masa o centroide (el punto en que un objeto se equilibra horizontalmente).
8. Encontrar la presión ejercida por un fluido.
9. Calcular el trabajo realizado de mover un objeto de un punto a otro.
10. Obtener velocidades y aceleraciones de móviles.
11. Conocer el superávit del consumidor (cantidad de dinero ahorrado por los consumidores, al comprar un artículo a un precio dado).
12. Determinar el flujo sanguíneo (volumen de sangre que pasa por una sección transversal por unidad de tiempo) de una persona y su gasto cardiaco (volumen de sangre bombeado por el corazón por unidad de tiempo.
APLICACIONES DE LA INTEGRAL
martes, 6 de diciembre de 2016
sustitucion por ¨U¨}
FORMULARIO DE LA SUSTITUCIÓN POR ¨U¨
INTEGRACIÓN POR SUSTITUCIÓN TRIGONOMÉTRICA
MÉTODOS DE INTEGRACIÓN
INTEGRACIÓN POR PARTES
El método de integración por partes permite calcular la integral de un producto de dos funciones aplicando la fórmula: Las funciones logarítmicas, "arcos" y polinómicas se eligen como u. Las funciones exponenciales y trigonométricas del tipo seno y coseno, se eligen como v'.
INTEGRACIÓN POR SUSTITUCIÓN TRIGONOMÉTRICA
concepto:
Las sustituciones que involucran funciones trigonométricas se pueden llevar a cabo en aquellas integrales cuyo integrando contiene una expresión de la forma:
con y
La sustitución trigonométrica permite transformar una integral en otra que contiene funciones trigonométricas cuyo proceso de integración es más sencillo.
FORMULARIO:
La derivada es el resultado de un límite y representa la pendiente de la recta tangente a la gráfica de la función en un punto.
Sean a, b, e y k constantes (números reales) y consideremos a: u(x) y v(x) como funciones.
Derivada de una constante
Derivada de x
Derivada de la función lineal
Derivada de una potencia
Derivada de una raíz cuadrada
Derivada de una raíz
Derivada de una suma
Derivada de una constante por una función
Derivada de un producto
Derivada de una constante partida por una función
Derivada de un cociente
Derivada de la función exponencial
Derivada de la función exponencial de base e
Derivada de un logaritmo
Como , también se puede expresar así:
Derivada del logaritmo neperiano
Derivada del seno
Derivada del coseno
Derivada de la tangente
Derivada de la cotangente
lunes, 7 de noviembre de 2016
Integral definida
La integración es el proceso inverso de la diferenciación. La integración nos da la libertad para dirigir en el espacio. Se pueden clasificar en dos tipos, a saber, la integración indefinida y la integración definida.
La integral definida se representa por .
∫ es el signo de integración.
a límite inferior de la integración.
b límite superior de la integración.
f(x) es el integrando o función a integrar.
dx es diferencial de x, e indica cuál es la variable de la función que se integra.
La integración es el proceso inverso de la diferenciación. La integración nos da la libertad para dirigir en el espacio. Se pueden clasificar en dos tipos, a saber, la integración indefinida y la integración definida.
La integral definida se representa por .
∫ es el signo de integración.
a límite inferior de la integración.
b límite superior de la integración.
f(x) es el integrando o función a integrar.
dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Suscribirse a:
Entradas (Atom)